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A UNIFIED TREATMENT OF LUNAR THEORY 

AND ARTIFICIAL SATELLITE THEORY 

By William A, Mersman 

Ames Research Center 

SUMMARY 

Lunar theory and artificial satellite theory are treated by a unified 
method that is a generalization of the von Zeipel procedure. The technique of 
separation of variables is used to generate a single canonical transformation 
that eliminates the time and all the angle variables from the Hamiltonian. 
The validity of the method is established and the calculations are carried far 
enough to illustrate the techniques involved. 

INTRODUCTION 

The theory of artificial satellite motion has been developed in recent 
years by methods that had not previously been considered applicable to lunar 
theory. The problems appear quite different, mathematically, because of the 
explicit appearance of the time in the lunar problem. 

In the present paper the familiar von Zeipel procedure is generalized in 
two respects. Explicit dependence on the time is permitted, in a certain 
restricted form, and then the time and all the angle variables are removed 
from the Hamiltonian by means of a single canonical transformation. This 
generalization is capable of solving the complete lunar problem far more effi- 
ciently than the older methods of von Zeipel or Delaunay. It is then shown 
that this method can be applied directly, in a simplified, degenerate form, to 
the artificial satellite problem. 

The familiar Delaunay variables are used, with one modification. The 
longitude of the node is measured from a moving, rather than from an inertial 
reference direction. For lunar theory the reference direction is that of the 
sun, for artificial satellite theory, it is the meridian of Greenwich. This 
device removes the explicit time dependence from the satellite problem, and 
drastically simplifies the lunar problem. 

r 

The generalized procedure is presented in the next section, and its 
application to lunar and satellite theory follow in that order. 
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inclination angle 

dimensionless coefficients in 
zonal harmonics 

6 
mass of moon 

Legendre polynomial 

associated Legendre function 

equatorial radius of the 
earth 

determining function, mass of 
sun 

tesseral harmonic 

determining function 

decomposition types 

solar factors 

1 - cos I 

longitude of sun's perigee 

eccentricity of sun's orbit 

geocentric latitude 

mean anomaly of  sun 

geographic longitude 

gravitational parameter 

mean motion of sun, spin 
velocity of earth 



p distance from sun to earth-moon I$ elongation of moon 
b aryc ent er 

Q longitude of node from inertial 
9 true anomaly of sun reference line 

THE GENERALIZED VON ZEIPEL TRANSFORMATION 

Recent applications of the von Zeipel transformation have been restricted 
essentially to Hamiltonians in which the time does not occur explicitly 
(refs. 1 and 2) .  When it does occur, it is formally removed by the artifice 
of adjoining an additional pair of canonical variables (ref. 3, pp. 530-531, 
and ref. 4). 
certain problems involving a time-dependent Hamiltonian. 
theory this permits many of the solar terms to be expressed in closed form, 
thereby avoiding certain Fourier series expansions that frequently complicate 
the problem unnecessarily. 

A generalized method is developed here that is applicable to 
In the case of lunar 

Consider the canonical system 

with "action variables" x = ( X I ,  x2, x3) and "angle variables" 
y = Cy,, y,, y,). Let the Hamiltonian be of the form 

where X (an angle) is a linear function of the time, with v = dX/dt a 
constant. This is the only form of time-dependence that will be considered. 

Now let q = (ql, q2, q,) and p = (ply p,, p,) be new canonical variables 
defined by the implicit transformation equations 

with the "determining function," W, given by 

3 



(E ins t e in ' s  summation convention w i l l  be  used throughout t h i s  paper:  a 
repea ted  s u b s c r i p t  i s  t o  be  summed over  i t s  range . )  Thus, i n  v e c t o r  no ta t ion ,  

x = q +  Aq 

Y = P + A P  

with t h e  increments having components given i m p l i c i t l y  by 

Expanding t h e  r i g h t  member of t h e  l a s t  equat ion  i n  a Taylor  s e r i e s  near  
g ives  

y = p 

This can be solved i t e r a t i v e l y  t o  any d e s i r e d  degree of  accuracy, i f  S 
and i t s  d e r i v a t i v e s  are assumed small: 

as 
aqi  

F i r s t  o rder  : (Ap)i = - - 

as a 2s Second order :  (Ap). = - - - 
1 'si aqi  a ~ j  

S imi la r ly ,  
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Thus the equations 

x = q + A q  

Y = P + A P  

with Aq, Ap given above, constitute an explicit solution of the implicit 
transformation equations. 

Now, q and p are canonical variables: 

with the new Hamiltonian, E, given implicitly by 

(ref. 5, ch. 6) 

I f  the right member is again expanded in a Taylor series and the explicit 
forms of Aq and Ap are inserted, an explicit representation E(q, p, A) is 
obtained. Successive differentiations with respect to p can be used to 
yield the symmetric equation 

1 a2F as as -- + -  as a~ as 
= F(q, p, A )  - V - +  a x  -- aqi api 2 aqi aqj api apj 

and only the new variables q and p appear. 

Now let n be the mean motion of the body being studied (moon or 
satellite in the present paper) and let m = v/n be a small quantity (i.e., 
m << 1). Introducing series expansions 

5 



k=o 

m 

E = C E k  
k=o 

with the subscript, k, denoting 
tions according to order of magnitude, that is, according to powers of m. 

O(mk), permits the separation of the equa- 

Thus, the explicit transformation equations become 

- as3 + a2s2 as, + a % ,  as2 
(A,PIi - - - aqi aqi apj aqj asi ap. aq. J J  

and so forth, for Ap, with analogous equations for Aq. 

The equation for the Hamiltonian separates into the "von Zeipel 
equations": 

Eo = Fo 
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as2 aFo as3 aF1 as2 a ~ ,  as, a2Fo as, as, 
ax aqi api asi api aqi api aqi aqj api apj 

-__ = F ~ - v - + - -  + - - + - -  + 

and so forth. 

It may be remarked that this representation of the transformation 
equations and of the Hamiltonian explicitly in terms of the new variables 
and p is not the usual practice. Brouwer (ref. 1) uses the mixed set of 
variables q and y. 

q 

In references 1, 2, and 4 the von Zeipel transformation is used succes- 
sively to eliminate only one angle variable, pi, at a time. In the applica- 
tions in the present paper, a single transformation will be exhibited that 
eliminates X and all three angle variables simultaneously. Thus, the par- 
tial derivatives disappear from the left members of  the von Zeipel equations, 
giving simply the components, Ek, explicitly. The equations will be used here 
only in this simplified form. 

These equations can be regarded as a simultaneous set of partial differ- 
ential equations for the components, sk, of the determining function, s. A 
technique that is similar to the classical one of separation of variables will 
be used to construct a recursive set of equations, each of which is a linear, 
first-order partial differential equation with constant coefficients. Speci- 
fically, the angle variables, p, will be the Delaunay variables (2 ,  g, h ) ,  
respectively, the mean anomaly, argument of perigee, and longitude of the node. 
Each term, sk, will be decomposed into the sum of three terms 

I s k  = xk + Yk + zk 

where 

X a periodic function of 2 

Y a periodic function of g, h, and A ,  with 2 absent and the sum, h + A, 
excluded 

Z a periodic function of two variables, g and the sum h + A, with 
absent 

7 



Simi la r ly ,  each term, Fk, of t h e  Hamiltonian w i l l  b e  decomposed i n t o  t h e  sum 
of fou r  terms. 

with t h e  p r e f i x  E denot ing a func t ion  t h a t  is  independent of X and a l l  t h e  
ang le  v a r i a b l e s  (2, g, h ) ,  t h e  o t h e r  p r e f i x e s  having t h e  meaning ass igned  
above. The c a l c u l a t i o n s  w i l l  then  proceed according t o  t h e  scheme: 

Order 0: EO 

Order 1: E l  x1 

Order 2 :  E 2  x2 y1 

Order k 3:  Ek 'k yk - l  zk-2 

which y i e l d  sho r t -pe r iod  terms t o  a h igher  o rde r  than  long-period terms. 
Later  it w i l l  be  shown t h a t  t h e  components X ,  Y,  Z are  obtained as follows: 

This i s  reminiscent  of t h e  schemes of  Brouwer and Hori ( r e f s .  1 and 2)  

The component xk w i l l  be  obta ined  by simple quadra ture :  

xk  = J(function of type  X)dZ 

The component Yk w i l l  s a t i s f y  an  equat ion of  t h e  type  

8 = i X  + j h  + kg, i # j ,  i, j ,  k i n t e g e r s  

Clear ly ,  t h e  s o l u t i o n  i s  

The component zk  w i l l  s a t i s f y  an equat ion of t h e  form 

8 = i g  + j ( h  + A ) ,  i, j i n t e g e r s  

and t h e  s o l u t i o n  is  

8 
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z =  Sf(O)d0 Si + rl j  

where 5 and rl are functions of the action variables (L, G, H) and it will be 
proved that the denominator never vanishes, so that no critical case occurs in 
the lunar theory. In satellite theory, of course, the case of critical 
inclination has to be excluded. 

Lunar theory will be treated first, and then it will be shown that 
satellite theory is simply a degenerate case. 

It is clear from the preceding discussion that the first task is to 
obtain a series representation of the Hamiltonian, in terms of the Delaunay 
variables, and then to exhibit the decomposition by type (X, Y, Z, E). This 
will be accomplished in the next section. 

LUNAR THEORY 

Development of the Hamiltonian 

The lunar theory to be developed here is that of the motion of the moon 
about the earth, under the assumption that the earth-moon barycenter (B) moves 
about the sun in a Keplerian orbit, the plane of which will be referred to as 
the ecliptic. Earth, moon and sun are regarded as point masses, and planetary 
perturbations are ignored. The Hamiltonian for the classical Delaunay 
variables (L, G ,  H) and (2, g, a )  is 

+- -  k2S E - r3P3(cos $1 . . . 
p 4  E + M  

(see ref. 3 ,  pp. 271 and 291), and 
the law of cosines of spherical 
trigonometry gives (see sketch) : 

COS 11, = cos (f + g)cos h 

- sin(f + g)sin h cos I 

where h is the elongation of the 
node, measured from the sun: 

i 
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If h i s  used, r a t h e r  than  R ,  as t h e  conjugate  v a r i a b l e  t o  H, then  t h e  
Hamiltonian i s  simply 

F = F '  + H -  d9 
d t  

s i n c e  

(2 . H) = - - a F  
a H  a H  a H  

and 

This choice  of v a r i a b l e s  makes $ independent of t h e  time, so t h a t  s o l a r  
e f f e c t s  e n t e r  only v i a  
c e n t e r .  

p ,  t h e  d i s t a n c e  from t h e  sun t o  t h e  earth-moon bary-  
Many Four ie r  series expansions and m u l t i p l i c a t i o n s  are thus  avoided. 

The usua l  methods of t h e  theory  of e l l i p t i c  motion ( r e f .  3,  ch .  2 ,  and 
r e f .  6, ch.  3) can be used t o  ob ta in  t h e  s o l a r  f a c t o r s  i n  c losed form and i n  
series.  The only ones needed he re  a r e  

- d4J = v ( l  + 6 )  
d t  

where v i s  t h e  sun ' s  mean motion and 

and 6k, 6k a r e  power s e r i e s  s t a r t i n g  with ~ k ;  f o r  example, 

. . .  I 
4 

6 1  = 2 E  - - E 3  

. . .  24 
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9 61 = 3E - - E 3  8 . . . 

To obtain the desired form for the lunar factors, write 

cos $ = cos(f + g + h) + y sin(f + g)sin h 

where 
H y = 1 - cos I = 1 - - G 

Then the Legendre polynomials can be written as 

is a trigonometric polynomial in f ,  with coefficients that are 'n, k where 
trigonometric functions of g and h; for example, 

3 3 _ -  - + - C O S ( ~ ~  + 2h)cos 2f - sin(2g + 2h)sin 2 f  P2,O 4 4 

3 3 3 
2 2 p2,1 = - - sin2 h + - sin h sin(2g + h)cos 2f + sin h cos(2g + h)sin 2f 

3 3 3 
= - sin2 h - - sin2 h cos 2g cos 2 f  + - sin2 h sin 2g sin 2 f  p2,2 4 4 4 

The Hamiltonian can now be written as a series 

where 
F =  2 Fk 

k=o 

u2 
2 L2 

h Fo = - 

F1  = VH 

F2 = v6H + v2r2p 
290 

2 F3 = v28r2p2,,+ V 2 - P  P2,1 

and so forth, under the assumptions that E = O(m), y = O(m). 

11 



F i n a l l y ,  t o  s e p a r a t e  each term by type (X, Y,  Z,  E) no te  t h a t  t h e  t rue 
anomaly, f ,  e n t e r s  i n  t h e  form 

r n  cos k f ,  r n  s i n  k f ,  0 ~k ~n 

and t h e s e  can be expressed as t r igonometr ic  polynomials i n  u ,  t h e  e c c e n t r i c  
anomaly, t h e  c o e f f i c i e n t s  being func t ions  of  a and e ( see  refs .  2 and 4). 
For example, 

r 2  = a2(1 + - 3 e2) + A, 
2 

5 
2 r2 cos 2 f  = - a2e2  + B, 

r2 s i n  2 f  = C, 

where 

A, = a2[-2e(i!j e + cos u) + 1 e2 cos 2u] 

C, = a2J1 - e2 (-2e s i n  u + s i n  2u) 

and each of  t h e s e  i s  p e r i o d i c  i n  
va lue  ( type X ) .  

2, t h e  mean anomaly, with vanishing mean 

The d e s i r e d  r e p r e s e n t a t i o n  of  t h e  Hamiltonian, then,  i s  

XF2 = 1 vg[AO + 3B0 cos(2g + 2h) - 3C0 s i n ( 2 g  + 2h)] F2 : 

YF2 = v6H + 15 v2a2e2  cos(2g + 2h) 8 

EF2 = - 1 v2a2(1  + 3 e2) 
4 

1 2  



S 
2 F3: XF, = B - XF2 + - yv2 s i n  h[-A, s i n  h +  Bo s in (2g  + h)  + Co c o s ( 2 g + h ) ]  

15 
16 2 1 YF3 = - v B a2e2[cos(2g + 2h + X) + cos(2g + 2h - XI] 

+ - 3 yv2a2 [(1 + 3 e2)cos 2h - - 5 e2 cos(2g + 2h)] + B EF2 4 2 

15 ZF, = yv2a2e2 cos 2g 

I E F ~  = - 3 yv2a2(1 + - 3 e2) 
2 

b 15 15 
16 16 F4:  ZF4 = - v2B2a2e2 cos(2g + 2h + 2X) - - y2v2a2e2  cos 2g 

EF4 = 8 3 y2v2a2(l  + 7 3 e2) 

The X and Y components of F4  w i l l  not  be given, s i n c e  t h e  a n a l y s i s  w i l l  
no t  be c a r r i e d  f a r  enough i n  t h e  p re sen t  paper t o  r e q u i r e  them. 

I t  may be remarked t h a t  F 3  conta ins  t h e  term v2Br 2 p2,0,  which y i e l d s ,  
among o t h e r s ,  t h e  term 

15 - v28a2e2 cos(2g + 2h) 8 

and he re  t h e  series f o r  f3 must be used, g iv ing  

- 15 v2a2e2B1 [cos(2g + 2h + A )  + cos(2g + 2h - A ) ]  
16 

+ . . .  

The f i rs t  l i n e  has  been included i n  YF3, and t h e  f irst  t e r m  of  t h e  second 
l i n e  i s  included i n  ZF4. There are  a l s o  h ighe r  o rde r  con t r ibu t ions  t h a t  must 
be  proper ly  ass igned  i n  a complete theory .  

6 

Solu t ion  of  t h e  Lunar Problem 

The lunar  problem can now be  solved by means of t h e  genera l ized  
von ZeipeP t ransformat ion  from t h e  o l d  v a r i a b l e s  

13 



to the new variables 

where the bar notation is used to emphasize the fact that the new variables 
are the mean values of the old ones, in the usual astronomical sense. That 
is, the difference between each new variable and the corresponding old one is 
a sum of terms each of which is a periodic function of the time with vanishing 
mean value. 

Since the new Hamiltonian contains only the action variables q, the new 
canonical equations are 

so that the q's (z, c, E) are constants. Then 

and the p's (7, g, F) are linear functions of the time. 

Since the von Zeipel equations connecting E, S, and F contain only the 
new variables, it is convenient to omit the bars and write simply (L, G ,  H) 
and (2 ,  g, h) during the calculations. Of course, the bars must be restored 
before the explicit transformation equations and the new canonical equations 
can be written. 

It is convenient to divide the discussion into two parts, since the 
equations of order 0, 1, and 2 are degenerate. It is also possible to omit 
many of the algebraic details by recalling that, for example, X k  is the only 
part of Sk that contains 2, and that 

aF, azk - - -  
aH ah 

since F 1  = vH and zk contains h and 

- 0  azk w - -  ai 

A only via their sum, h + A .  

Initial stages.- The first von Zeipel equation is simply 

Y2 
2L2 Eo = Fo = 

and the second is 

which separates immediately into X I  = 0, E l  = wH, since F 1  is entirely o f  
type E .  

14 



The equation of second order is, in view of the result just obtained, 

Since ZF2 = 0, this equation separates into three: 

and integrating gives 

15 
16 Y1 = (4 - A)H - - vla2e2 sin(2g + 2h) 

E2 = - 1 v2a2(l + 3 e’) = 1 2  (5L4 - 3G2L2) 
4 P2 

where 

A1 = SAo dZ =JAo(l - e cos u)du 

1 e3 sin 3u sin u + - e2 sin 2u - - 3 
4 12 = a2 [(g e3 - 

= a2[(; e3 - 2 e)sin u + ($ + 1 e2)sin 2u + (= 1 
B1 = IBo dZ 

2 

C 1  = fCo dZ 

1 = a2- [g e (+ e + cos u 1 
6 (1 + e2)cos 2u + - e cos 3u 

Following Hori (ref. 2) the term (1/2)e is added to cos u to 
annihilate the mean value with respect to 2. 

The general case, order k I 3 . -  When the explicit equation for the new 
.- .. ___ 

Hamiltonian was separated according to the order 
that the order of a term is not affected by the process of differentiation. 

k,  it was implicitly assumed 

15 



However, the present Hamiltonian, beginning with F3 contains the factor 
y = 1 - (H/G), so that differentiation may "lose" one power of 
reducing the order. F o r  example, the terms 

y, thereby 

are of second order. When this is taken into account, the general equation, 
of order k can be written in the f.orm 

where Qk is a sum of terms involving Fk and previously computed quantities. 
The currently undetermined components 
exhibited here explicitly. 

Xk, Yk- l ,  z k - 2  occur only in the terms 

Recalling the separation of F2 and F3 into components, it can be seen 
that the terms 

are entirely of type X, while the terms 

are entirely of  type Y .  Since ZF3 contains the factor e2 as well as 
y v 2 ,  the terms containing can be regarded as of order 
k + 1, under the assumption that 
to the next stage. Since ZF2 = (aEF2/aH) = 0,  the Z component of the 
equation for Ek becomes simply 

aZF3/ay and zk-2  
e2 = O(m); that is, these terms are deferred 

Inserting EF2 and EF3 gives 

a z k - 2  + n - -  a z k - 2  
ag 

5- ah - ZQk 

16 



where 

q = - - v  3 a2 (1 + 3 e2) 4 2 - 6 -  

If t h e  t y p i c a l  t e r m  of ZQk has  t h e  form f ( 0 )  with 8 = i g  + j ( h  + A ) ,  t hen  
t h e  corresponding term i n  Zk-2, i s  

The only case  t h a t  can produce a small denominator i s  j = 2i, giv ing  

If y vanishes ,  t h e  o r b i t  p lane  co inc ides  with t h e  e c l i p t i c ,  t h e  node lo ses  
i t s  i d e n t i t y ,  and g, h ,  occur only i n  t h e  sum g + h .  Hence, terms of type 
Z must con ta in  t h e  s i n g l e  argument, g + h + A ,  so t h a t  j = i and t h e  small 
d i v i s o r  does no t  occur .  Hence, t h e  d i v i s o r  never vanishes .  

Once Zk-2 has been obtained,  t h e  equat ion f o r  Ek sepa ra t e s  i n t o  three:  

- sum of terms of type X u 2  axk - - -  
L3 a z  

aYk-1 aYk-1 
v (Tr - -) ah = sum of terms of type  Y 

Ek = sum of terms of type  E 

and these  can be i n t e g r a t e d  by quadra ture .  

The equat ions  of o rde r  3 and 4.- If t h e  n o t a t i o n  of t h e  preceding s e c t i o n  
i s  used, t h e  known t > K o f  o rde r  t h r e e  are  

F i r s t  cons ider  t h e  terms involv ing  F3 and Y 1 .  These can be p u t  i n  t h e  form 

17 
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I 

by no t ing  t h a t  

y = l - -  H 
G 

a Y  - 1 H = G(l  - y )  - -  - - a H  G 

The second term, due t o  t h e  reappearance of  t h e  " los t"  y ,  is  of  f o u r t h  o rde r ,  
and hence can be defer red  t o  t h e  next  s t a g e  ( t h i s  i s  t r u e  a t  every s t a g e ) .  
The f irst  term vanishes ,  s i n c e  Y 1  con ta ins  t h e  s i n g l e  argument. g + h ( t h i s  
does not  occur a t  l a te r  s t a g e s ) .  

Next cons ider  t h e  term 

15 - v26a2e2 cos(2g + 2h) a H  ah 8 
- aF, a Y 1  - 

Again t h e  series expansion f o r  t h e  s o l a r  f a c t o r  6 must be  used, g iv ing  

15 
16 - - ~ 2 6 ~ a ~ e ~ [ c o s ( 2 g  + 2h + A )  + cos(2g + 2h - A ) ]  

15 
16 - - v2A2a2e2[cos(2g + 2h + 2X) + cos(2g + 2h - 2X)] 

+ , . .  

The terms on t h e  f irst  l i n e  a r e  of t h i r d  order ,  while  t h e  remaining terms 
can be de fe r r ed  t o  l a t e r  s t a g e s .  The t rea tment  of t h e  o t h e r  terms i n  Q3 i s  
s t r a igh t fo rward .  In  p a r t i c u l a r ,  t h e  only term of type Z i s  

15 
8 ZQ, = ZF, = - yv2a2e2  cos 2g 

and t h e  genera l  theory  of t h e  preceding s e c t i o n ,  with i = 2,  j = 0, g ives  

5 yGe2 s i n  2g 

z, = 
1 

Expanding t h e  denominator by t h e  binomial theorem, with 

1 ( e') - -7 1 e2 < = - y l + -  
2 

18 
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gives  
5 

Z 1  = s yGe2 s i n  2g 

and t h e  remaining terms 
2 

Z, (C + 5 + 5 3  + . . .) 

can be assigned t o  t h e  h ighe r  s t a g e s  Z 2 ,  Z3,  . . .. 
The process  of  i n s e r t i n g  Z 1  i n  t h e  terms no t  used i n  i t s  c a l c u l a t i o n  i s  

s t r a igh t fo rward .  In  p a r t i c u l a r ,  t h e  de fe r r ed  terms involv ing  aZF3/ay become 

thus  making con t r ibu t ions  of types Z and E t o  t h e  four th-order  

The rest  of t h e  procedure i s  s t r a igh t fo rward ,  provided t h a t  
occurs i t  i s  t o  be rep laced  by 1 - y and t h e  terms wi th  t h e  e x t r a  y are  
reass igned  t o  t h e  next  s t a g e .  Then t h e  th i rd -o rde r  equat ion  y i e l d s  

equat ion.  

wherever H/G 

3 L 3  

u 2  
X3 = B X 2  + 7 yv2 - s i n  h 

+ B 1  s in (2g  + h)  + Ci 

3 L6 - vv2 [ B 2  s in (2g  u 

cos(2g + h ) ]  

+ 2h) + C 2   COS(^^ + 2h)l 

2g - -- l5 vla2e2  cos(2g + 2h)] 8 

s in (2g  + 2h) 1  COS(^^ + 2h) - 3 a G  

5 - -  46: vl2a4e2 5 k i n ( 2 g  + 2h) + s in (4g  + 4h)] 
L2  

15 1 
+ 16 v l ( 6 1  - Bl)a2e2 [sin(2g + 2h + A )  + s in (2g  + 2h - A a  

- - 3 yvla2(1 - 2 e2 + 2 e4)s in  2h 
8 8 16 

+ - 45 yvla2e2(2 - e 2 ) s i n ( 2 g  + 2h) + - 15 yvla2e2(1 + $ e2)sin(2g - 2h) 
128 64 

75 
128 + - yvla2e2(2  - e 2 ) s i n ( 4 g  + 2h) 
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225 vlv2a 4 2 G -  e - 3 yv2a2(1 + 3 e2) E 3  = - 
64 L2 

where 
B2 =JB1 dZ and C2 =sC1 dZ 

Partial results from the fourth stage are 

5 
Z2 = Ge2(B2 - 6 2  + 6 1 2  - 61Bl)sin(2g + 2h + 2X) 

75 
e2 + 256 e4) 5 5 75 y2Ge2(l - - 64 + [- 9 yGe4 + 

1 45 - - 256 yvla2e2(12 - 23e2 + lle4) sin 2g 

+ [g yGe4 - - 25 y2Ge2(16 - 16e2 + e4) 1024 

225 yvla2e4(1 - e21 sin 4g 1024 1 + -  

125 
3072 y2e4 (4 - e2)sin. 6g - -  

(4 - 5e2) 6 75 a6e2 e2 - ___ 4347 e') + 1024 v12v2 - 49 873 
64 64 v22a6 L2 (- - 512 L2 

+ -  E4 = - 

75 2 4  v v  
a4(16 - 352e2 + 411e4 - 75e6) + - yv2a e 64 +- -  512 G 

3 
512 + - y2v2a2(64 - 304e2 + 400e4 - 25e6) 

This completes the discussion of the lunar theory. The validity of the 
method has been established, and the calculations have been carried far enough 
to illustrate the manipulative techniques that are required. 

ARTIFICIAL SATELLITE THEORY 

Development of the Hamiltonian 

The primary purpose here is to demonstrate that the generalized 
von Zeipel transformation can be applied directly, in a simple, degenerate 
form, to artificial satellite theory. The usual assumptions about the gravi- 
tational field of a triaxial ellipsoid give the Hamiltonian 

20 



n 
F = -  ' 2  + UH + 2 Dn + Tn,m 

2L2 n= 2 n=2 m=l 

where the zonal harmonics, Dn, and the tesseral harmonics, Tn,m are 

D = -'Jn - Rn Pn(sin 0 )  n ,n+ 1 

(Cn,m COS mA + S,,, sin mA)Pnm(sin e )  Rn 
Tn,m = P 

Here u is the spin velocity of the earth, R is the equatorial radius of the 
earth, 0 and A are the geographical latitude and longitude (measured east 
from Greenwich), J, C y  and S are dimensionless constants, Pn is the Legendre 
polynomial, and Pnm is the associated Legendre function 

Pnm(z) = (1 - Z2)m/ 2 dmPn (z) 
d Zm 

The notation for the zonal harmonics is Brouwer's (ref. 1) and the 
notation for the tesseral harmonics is Izsak's (ref. 7). As in the lunar 
theory the term vH is added to the Hamiltonian because the longitude of the 
node, h, is measured from a rotating reference line (the meridian of 
Greenwich). 

Orders of magnitude can be defined by introducing n, the mean motion of 
the satellite, the dimensionless parameter m =. u/n << 1, and the usual 
assumptions (Garfinkel, ref. 8) 

Thus , 

P 2  

2L2 
F, = - 

F1 = VH 
F2 = D2 
F3 = 0 
F4 = sum of tesseral harmonics 

and remaining zonal harmonics 
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To decompose Fk by types (X,  Y ,  Z ,  E )  

no te  t h a t ,  s i n c e  t h e  p re sen t  Hamiltonian does not  con ta in  t h e  time, t h e  
d e f i n i t i o n s  reduce t o  

X: p e r i o d i c  i n  Z 

Y: pe r iod ic  i n  g and h, independent of  Z 

Z :  p e r i o d i c  i n  g, independent of Z and h 

E:  independent of a l l  t h r e e  angle  v a r i a b l e s  

Following Brouwer ( r e f .  1) , 
i n t roduce  2, t h e  mean anomaly, implic-  
i t l y  v i a  f ,  t h e  t r u e  anomaly, by means 
of  t h e  formulas 

G 2 h  
1 + e cos f r =  

s i n  8 = s i n  I s i n ( f  + g) 

Then t h e  Legendre polynomials become 
t r igonometr ic  polynomials i n  f + g.  
For example, 

5 3 
2 2 

3 5 

~ 3 ( s i n  0 )  = - s i n 3  0 - - s i n  8 

= - 8 s i n  1(1 - 5 cos2 I ) s i n ( f  + g) - - 8 s i n 3  I s i n ( 3 f  + 3g) 

3 - 
-64 (3 - 30 cos2 I + 35 cos4 I )  

35 - -  s i n 2  1(1 - 7 cos2 1 )cos (2 f+  2g) + - 64 s i n 4  I cos(4f  + 4g) 16 
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I 

and the associated Legendre functions can be treated similarly, since 

dmPn(sin 9) 
Pnm(sin 9)  = cosm e 

d(sin 

Thus, for example, 

P32(sin 9) = 15 cos2 9 sin 9 = 15 cos2 9 sin I sin(f + g) 

P33(sin 9) = 15 cos3 e 

The factor cosm e will disappear by cancellation once the longitudinal 
factors have been obtained. To show this, use the trigonometric formulas 
(ref. 9 )  

w = A - h  

sin(f + g)cos I sin w = 
COS e 

cos(f + g) 
COS e cos w = 

to obtain 

c1 sin h + S I  cos h 
cos 9 

sin A = 

c1 cos h - s1 sin h 
COS A = 

COS e 

c1 = cos(f + g) 

Si = cos I sin(f + g) 

and hence, by induction, 
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Cm sin m h + Sm COS m h 
sin mh = 

 COS^ e 
Cm COS m h - S, sin m h 

cosm e 
cos mh = 

C = CmCl - S,Sl m+ 1 

S = CmS1 + SmC] m+ 1 

so that, for example, 

1 1 
2 c2 = - sin2 I + 7 (1 + cos2 I)COS(~~ + 2g) 

s2 = cos I sin(2f + 2g) 

1 
4 4 c3 = 5 sin2 I cos(f + g) + - (1 + 3 cos2 1)cos(3f + 3g) 

3 1 
4 4 53 = - sin2 I cos I sin(f + g) + - ( 3  + cos2 I)COS I sin(3f + 3g) 

These yield the desired expressions for the tesseral harmonics, typical 
examp 1 es being 

1 (C,,, cos 2h+S 2 , 2  sin 2h) sin2 I + -  2 (1+cos2 I)cos(2f+2g)l 

+ (S,,, cos 2h - C sin 2h)cos I sin(2f + 2g) 
, Y 2  

3 R 3  
r4 T3,1 = v - [(C3,1 cos h + S,,, sin h)cos(f + g) 

+ (S3 cos h - C,,, sin h)cos I sin(f + g)] 
Y 

x [ 3  - 5 cos2 I - 5 sin2 I cos(2f + 2g)l 

Thus, both zonal and tesseral harmonics can be expressed as trigonometric 
polynomials in f + g, multiplied by negative powers of r, and the coeffi- 
cients are functions of I and h. 
introduce the mean values with respect to 2 (Brouwer, ref. 1): 

To effect the decomposition by types, 
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21T - D = L l DndZ 
n 2l~ 

so that the components of type X are simply 
- 

XDn = Dn - Dn 

Perform the integrations by changing to the true anomaly, f, as the 
variable of integration, using the formulas 

G2/P 
1 + e cos f r =  p2r2 

dZ = - df, 
GL 

Then the negative powers of r become positive powers of 1 + e cos f, and 
the integrands become trigonometric polynomials in f. 

The zonal harmonics have no components of type Y, and the tesseral 
harmonics have no components of type Z or E. Hence, 

- 
Dn = ZDn + EDn 

- 
Tn,m = YTn,m 

- 
and the separation of D, is done by inspection. Typical results are: 

R2 1 R2 

r3 4 r3 
F2 = -1152 - P2(sin e )  = - uJ2 - [ 3  cos2 I - 1 + 3 sin2 I cos(2f + 2g)] 

l14R2 ( 3  cos2 I - 1) 
- 

EF2 = F2 = 52 - 
G3L3 

The third zonal harmonic yields 

- 5 3  
ZDg = D3 = g 53 ' ~ e sin 1(5 cos2 I - 1)sin g 

G5L3 
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YD3 = ED3 = 0, X D 3  = D 3  - Z D 3  

and t h e  f o u r t h  g ives  

3 v 6 R 4  3 
ED4 = - 5 4  - (1 + e2)(3 - 30 cos2 I + 35 cos4 I)  

G7L3 

YD4 = 0, XD4 = D 4  - (ZD4 + ED4) 

The f irst  two tesseral harmonics g ive  

YT2,2 = -- v4R2  s i n 2  I(C2,2 cos 2h + S2,2 s i n  2h) 
G3L3  

XT2,2 = T2,2  - YT2,2 

and 

[(C3,1 COS h + S3,1 s-.? 
3 p5R3e 

G 5 L 3  
YT3,1 = -~ (1 - 5 cos2 1)cos g 

+ (S3 cos h - C 3 , 1  s i n  h ) ( l l  - 15 cos2 1 ) s i n  g] 
Y 

I t  i s  clear t h a t  every harmonic can be  decomposed i n  t h i s  fash ion .  

Solu t ion  of t h e  Ar t i f i c i a l  S a t e l l i t e  Problem 

I n i t i a l  s t a g e s . -  The genera l ized  von Zeipel  procedure g ives ,  f o r  t h e  
f i rs t  t h r e e  s t a g e s ,  e s s e n t i a l l y  t h e  f i r s t - o r d e r  r e s u l t s  obtained by Brouwer 
( r e f .  1). 

U L  
2L2 

Eo = Fo = - 

and, as i n  t h e  luna r  theory,  X1 = 0 .  The second-order equat ion is  

a Y 1  + v -  v 2  2 
L3 a 2  ah E2 = XF2 + EF2 - - 
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Separa t ing  and i n t e g r a t i n g  g ives  

Y 1  = 0 

1 u4R2 H2 
E2 = EF2 ,= 5 2  - 

G 3 L 3  (3 - ') 
X 2  = $ S X F 2  dZ = 53 ( S F 2  dZ - E2Z) 

lJ u 2  

= - J 2 -  u 2 ~ 2  { (3 cos2 1 - 1 > ( f  - + e s i n  f )  1 
4 G 3  

1 1 [I' 2 6 + 3 s i n 2  I "i s i n ( 2 f  + 2g) + - e s i n ( f  + 2g) + - e s i n ( 3 f  + 

The genera l  case ,  o r d e r  k L 3. -  Since t h e  q u a n t i t i e s  X and y of  t h e  

Hence, t h e  genera l  
l una r  theory  do no t  occur i n  t h e  s a t e l l i t e  problem, t h e  von Zeipel equat ions 
do no t  s u f f e r  any l o s s  of o rde r  due t o  d i f f e r e n t i a t i o n .  
equat ion  becomes 

where Qk i s  a sum of known terms.  The component zk-2 i s  

t h a t  i s ,  

which can be i n t e g r a t e d  by quadra ture .  The genera l  equat ion 

obtained from 

then  becomes 

- ZQk 

which sepa ra t e s  i n t o  th ree :  

Ek = EQk 
Notice t h a t  t h e  p a r t i a l  d i f f e r e n t i a l  equat ions of lunar  theory  have 
degenerated t o  o rd ina ry  equat ions  here .  
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Equations of order 3 and-4.- The third-order equation is completely 
degenerate since the known terms are 

ax, aF, ax, a2Fo ax, ax, 
43 = F3 + v ~ + - ah 

giving 

E3 = X3 = Y2 = z1 = 0 

For the fourth-order equation the known terms are 

2 

Since this expression is quite lengthy the components of type 
exhibited. The zonal harmonics give the components of types Z and E which 
yield Brouwer's results (ref. 1) 

X will not be 

[J2(1 - 15 cos2 I) 1 p2R2e2 sin2 I 
G3 5 COS2 1 - 1 22 = 32 

'3 pRe sin I cos g 554 + - (1 - 7 cos2 I) sin 2g - --- 
5 2  1 2 5 2  G 

3 2 E G~ (5 cos4 1 - 1s cos2 1 + 5) 
G7L3 [F E4 = - 128 52  

G 
L + 4 - ( 3  COG I - ii2 + 5(7  cos4 I + 2 cos2 I - 

The first two tesseral harmonics yield the typical contribution t o  Y3: 

y3 = - -~ '4R2 sin2 I(C2,2 sin 2h - S2,2  cos 2h) 
4 vG3L3 

[ (5 cos2 I - 1)cos g(C3,1 sin h - S3 1 cos h) 3 v5R3e 
+ 8- 9 

+ (15 cos2 I - 1l)sin g(S3,1 sin h + C3,1 cos h)] 

Again, the development can be terminated with the remark that the 
validity of the method has been established, provided the critical inclination 
is avoided. 
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CONCLUDING REMARKS 

The generalized von Zeipel transformation presented here is clearly 
capable of producing a highly efficient lunar theory. 
tion resides in the partial uncoupling of solar and lunar factors. This 
occurs in the initial development of the Hamiltonian and in the final develop- 
ment of the determining function. At both stages many Fourier series expan- 
sions are avoided, the result being a product of two finite expressions. This 
is achieved primarily because the elimination of the short period terms is 
effected by solving an ordinary differential equation, in which solar factors 
play the role of constants. 

The major simplifica- 

If the inclination angle is not restricted to small values, the same 
technique can be applied to eliminate the terms of types 
of type Z remaining in the new Hamiltonian. The resulting system might well 
be a fruitful subject for future research. 

X and Y, with terms 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., July 24, 1969 
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APPENDIX 

EXPLICIT RECURSIVE ALGORITHMS FOR THE VON Z E I P E L  TRANSFORMATION 

The bas i c ,  i m p l i c i t  equa t ions  of t h e  von Zeipel  t ransformat ion  are 

p resen t  purposes,  t h e  dependence on t, v i a  A ,  i s  i r r e l e v a n t .  Let 
an a r b i t r a r y  f u n c t i o n  and l e t  

That i s ,  t h i s  i s  an i d e n t i t y  i n  e i t h e r  se t  of v a r i a b l e s  under t h e  transforma- 
t i o n  (x, y) - (9, p ) .  El iminat ing p i n  t h e  l e f t  member and x i n  t h e  
r i g h t  member g ives  

an i d e n t i t y  i n  (q, y ) .  Expanding each member i n  Taylor ’s  s e r i e s  g ives  
00 

00 

with t h e  repea ted  s u b s c r i p t s  i l ,  i,, . . ., ik s a t i s f y i n g  t h e  summation 
convention. 
a r e  dummies, and can be rep laced  by (q, p) o r  by (x, y ) .  Introducing t h e  
s e r i e s  expansion 

Since t h i s  i s  an  i d e n t i t y  i n  t h e  v a r i a b l e s .  (9, y ) ,  t h e  v a r i a b l e s  

+=z n=o +n 

00 

n=o 
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m 

s = c s n  

and c o l l e c t i n g  terms of  equal  order  g ives ,  wi th  (9, y) rep laced  by (9, p ) :  

Qo(q, PI = @o(q, PI 

and, f o r  n L 1, 

where denotes  t h e  sum over  a l l  combinations of a, a 1 ,  a 2 ,  . . ., ak 

s a t i s f y i n g  
a 

This can be  pu t  i n  t h e  e x p l i c i t  form 

where 

rl = n + 1 - k 
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Thus, f o r  example, 

and s o  f o r t h ,  a r e c u r s i v e  system. 
JIncq, p) a r e  obta ined  r e c u r s i v e l y .  
w r i t t e n  with (x, y) i n  p l a c e  o f  (9, p ) ,  then $n(X, y) can be obtained 
r e c u r s i v e l y  when 
v a r i a b l e s  (x, y) and (9, p ) ,  i n  e i t h e r  d i r e c t i o n ,  now fol low immediately as 
s p e c i a l  cases ,  by tak ing ,  success ive ly  

Thus, if $n(x, y) a r e  given,  then  
S imi l a r ly ,  i f  t h e s e  same equat ions are 

JIn(q, p) a r e  given.  The equat ions f o r  t ransforming t h e  

The r e s u l t s  are 

where 

and, f o r  n 2 2 ,  
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where 

t l = n - k  

+ 1  f o r  j = 1 , 2 , .  . . , k - 1  
j 

t j + l  = t j - a  

a = t  k - " k + 1  

Thus, for example, 

and so  f o r t h ,  where s k  = Sk(q, p) . 
The t ransformat ion  equat ion  f o r  y is  

where 

and, f o r  n A 2,  

Thus, for example, 

and s o  f o r t h ,  aga in  wi th  Sk = sk(q,  p ) .  

33 
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The r e v e r s e  t ransformat ion  is 

where 

X = x  
B,o B 

and, f o r  n 2 2 ,  

Thus, f o r  example, 

and so f o r t h ,  where now sk  = sk(xy y ) .  

F i n a l l y ,  t h e  t ransformation equat ion f o r  p i s  

where 

and, f o r  n L 2, 
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Thus, for example, 

- - - -  
€3 

%,e ax 

and so  f o r t h ,  aga in  with 

as2 a Y s , 2  as1 1 a2ys , l  as, as, 
axi ayi 2 axi ax .  ayi ayj  

~ - - - - - -  
J 

axi ayi 

I t  may be  noted t h a t  t h e  au tho r s  of r e c e n t  papers  on t h e  Lie transforma- 
t i o n  (refs. 10 and 11) have remarked t h a t  t h e  von Zeipel  t ransformat ion  i s  
u n s a t i s f a c t o r y  because of  i t s  i m p l i c i t  n a t u r e .  Such remarks a re  no longer 
v a l i d  i n  view of t h e  p re sen t  e x p l i c i t  a lgori thms f o r  e f f e c t i n g  t h e  transforma- 
t i o n  of coord ina tes  and of  a r b i t r a r y  func t ions  i n  e i t h e r  d i r e c t i o n .  
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shnfl proi'ide f o s  the wide.rL prncticnble nizd nppsoprinte disset)iiizntion 
of iuformntioiz comeruing its nctiimities nizd the re sd t s  thereof." 
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